A Remark on Global Well-posedness below L for the Gkdv-3 Equation
نویسنده
چکیده
The I-method in its first version as developed by Colliander et al. in [2] is applied to prove that the Cauchy-problem for the generalised Korteweg-de Vries equation of order three (gKdV-3) is globally well-posed for large real-valued data in the Sobolev space H(R → R), provided s > − 1 42 .
منابع مشابه
Global Well-posedness for Periodic Generalized Korteweg-de Vries Equation
In this paper, we show the global well-posedness for periodic gKdV equations in the space H(T), s ≥ 1 2 for quartic case, and s > 5 9 for quintic case. These improve the previous results of Colliander et al in 2004. In particular, the result is sharp in the quartic case.
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملRemark on Well-posedness and Ill-posedness for the Kdv Equation
We consider the Cauchy problem for the KdV equation with low regularity initial data given in the space Hs,a(R), which is defined by the norm ‖φ‖Hs,a = ‖〈ξ〉s−a|ξ|a b φ‖L2 ξ . We obtain the local well-posedness in Hs,a with s ≥ max{−3/4,−a − 3/2}, −3/2 < a ≤ 0 and (s, a) 6= (−3/4,−3/4). The proof is based on Kishimoto’s work [12] which proved the sharp well-posedness in the Sobolev space H−3/4(R...
متن کاملGlobal Well-Posedness for Schrödinger Equations with Derivative
We prove that the 1D Schrödinger equation with derivative in the nonlinear term is globally well-posed in H s , for s > 2/3 for small L 2 data. The result follows from an application of the " I-method ". This method allows to define a modification of the energy norm H 1 that is " almost conserved " and can be used to perform an iteration argument. We also remark that the same argument can be us...
متن کاملAlmost Surely Local Well-posedness of the Cubic Nonlinear Schrödinger Equation below L²(t)
We consider the local well-posedness of the periodic cubic nonlinear Schrödinger equation with initial data below L(T). In particular, we prove that it is locally well-posed almost surely for the initial data in the support of the Gaussian measures on H(T) for each s > − 1 8 .
متن کامل